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ABSTRACT

The principal goal of visualization is to create a visual repre-
sentation of complex information and large datasets in order
to gain insight and understanding. Our current research fo-
cuses on methods for handling uncertainty stemming from
data acquisition and algorithmic sources. Most visualiza-
tion methods, especially those applied to 3D data, implicitly
use some form of classification or segmentation to eliminate
unimportant regions and illuminate those of interest. The pro-
cess of classification is inherently uncertain; in many cases
the source data contains error and noise, data transformations
such as filtering can further introduce and magnify the uncer-
tainty. More advanced classification methods rely on some
sort of model or statistical method to determine what is and
is not a feature of interest. While these classification methods
can model uncertainty or fuzzy probabilistic memberships,
they typically only provide discrete, maximum a-posteriori
memberships. It is vital that visualization methods provide
the user access to uncertainty in classification or image gen-
eration if the results of the visualization are to be trusted.

Index Terms— Scientific Visualization, Uncertainty,
Sensitivity, Data Processing, Computer Graphics

1. INTRODUCTION

The Nobel laureate Richard Feynman once said, “What is not
surrounded by uncertainty cannot be the truth.” In science,
any measurement or calculation is accompanied by a measure
of uncertainty, or expected variability in the quantity. Knowl-
edge of uncertainty can be as valuable and interesting as the
measurement itself. It conveys the degree to which a mea-
sure can be trusted and is a key indicator of the quality of the
process or calculation. Uncertainty may not always describe
error; in many situations, the phenomena or feature being ob-
served takes on a range of values and is best expressed as a
distribution rather than a single discrete value. While visual-
ization methods are widely recognized as an essential com-
ponent of modern scientific data analysis, image generation
and interaction techniques rarely account for uncertainty in
the raw data and filtering, much less provide a visual indica-
tion of its presence.

NSF Grant 0702787

2. UNCERTAINTY

The National Institute of Standards and Technology, NIST,
and the National Center for Geographic Information and
Analysis, NCGIA, define standard measurement uncertainty
as the standard deviation of a measured value [1, 2], for
instance 3.5 ± .70m. The NIST definition of expanded mea-
surement uncertainty is an interval that captures the true value
of a measurement with some level of confidence, for example
3.5 ± 1.2m with 99% confidence. Our work deals primar-
ily with classification results. In this case, we are interested
in a stochastic uncertainty, which may be regarded as the
complement of a class posterior probability, i.e. 1 − P (ω|x)
where P (ω|x) describes the probability of class ω given fea-
ture vector x. It is also valuable to consider uncertainty as
it relates to the decision making process. A derived quantity
known as risk can provide a quantitative measure of the cost
associated with a particular decision. Other derived measures
based on risk include physical units such as distance a deci-
sion boundary will move per unit change in prior probability
or risk.
Figure 1 illustrates the value of uncertainty information

in visual data analysis using a synthetic 2D example. Fig-
ure 1-A shows the ground truth synthetic model, which has
five different material classes. In this example, we simulate
raw data (Figure 1-B) by assigning a unique intensity value
to each of the materials, rasterizing them into a 2562 image,
blurring the result (to simulate a band-limited image), and fi-
nally adding three percent normally distributed noise (typi-
cal of acquired data). Figure 1-C shows four relevant iso-
value thresholds (taken at intervals between the class means)
as subimages. This is analogous to isosurfacing in 3D. Notice
that few of the thresholds manage to capture distinct materi-
als when compared to the ground truth image. Figures 1-D
through H use classified data to perform color mapping. The
posterior class conditional probabilities were estimated using
the known parameters; mean data value, noise distribution,
and a neighborhood size proportional to the blur kernel. In
Figure 1-D, colors were weighted by the class probabilities
and blended together. This color mapping is a fuzzy syntactic
method. Figure 1-E shows the image color mapped based on
the class with the maximum probability (0-1 risk decision),
as is commonly done in classification algorithms. This kind
of data is also called ”tagged data”. There is no indication
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Fig. 1. A 2D example of probabilistic boundary behavior.
A) The synthetic dataset, consisting of five materials. B) The
raw dataset constructed from a blurred monochrome version
of the synthetic dataset with noise added. C) The four most
relevant iso-value thresholds of the raw data as subimages.
D) An image colored based on the class conditional probabil-
ities of the classified raw data. E) A ”max-probability” tagged
image. F) The data set color mapped based on a probability
threshold of 0.5. G) An image colored based the probability
ratios (risk curves). H) An image showing several risk con-
tours for material ”e”. I) Data color-mapped using a carefully
hand tuned 2D transfer function, based on raw data value and
the gradient magnitude of the median filtered raw data.

of uncertainty in this image. Figure 1-F shows a color map-
ping based on class probabilities greater than a threshold of
0.5 for all classes; all data values containing a probability less
than 0.5 are shown as black. This is equivalent to isosurfac-
ing the class probabilities. Figure 1-G shows the image with
colors weighted based on risk. Notice that the boundaries are
crisper than in the probability weighted example and that the
variation in thickness for the loop (material e) is easier to see.
This example combines syntactic and semantic approaches,
since the color mapping is fuzzy, but more directly related to
alternative realizations of the structure. Figure 1-H shows a
color mapping based on the 0-1 risk decision, with the addi-
tion of two risk-based decision contours for material e. This
is an example of a semantic method; the contours clearly in-
dicate important variation in the classified material. Finally,
Figure 1-I shows a color mapping made using a carefully de-
signed 2D transfer function, based on data value and gradient
magnitude. Because gradient estimation is highly sensitive to
noise, the 2D transfer function performed quite poorly with
the raw data (top-right subfigure), even though the gradient

was estimated using the derivative of a cubic b-spline ker-
nel, which implicitly blurs the data. To accommodate for the
noise, the data required further pre-processing using a median
filter (introducing additional uncertainty) with a width of five
pixels before gradient computation (Figure 1-I, bottom-right
subfigure).

3. DIRECTIONS

Our work focuses on three primary aspects of uncertainty in
visualization:

• Establishing newmethods for the rendering and display
of features in volume data that expose uncertainty and
variation. Our work emphasizes interactive characteris-
tics of the visualization that provide concrete examples
of features and a structured exploration of variant un-
certainty realizations.

• Developing and adapting computational classification
methods that preserve uncertainty and propagate this
uncertainty through to the final visualization stage. We
are developing a framework for quantifying uncertainty
at each stage of the visualization pipeline and preserv-
ing it for use in rendering and interaction.

• Creating ground-truth phantom models for validation.
We leverage classification results to develop synthetic
models that capture the expected variation of real struc-
tures and simulate the errors introduced through data
acquisition and discretization.

Our goal is the development of visual tools that move the
field of visualization forward as a precise science of discov-
ery. Defining and understanding the role of visualization in
decision making is a key task that we are addressing. Expos-
ing and quantifying uncertainty is essential in decision mak-
ing. Knowledge of alternatives and the potential for error al-
lows one to make a more informed decision and manage the
cost associated with an incorrect judgment.
The successful integration of uncertainty and visualiza-

tion will capture the semantic meaning of uncertainty as it
relates to structures that appear in the rendered image. A se-
mantic visualization of structures in the presence of uncer-
tainty exposes the variation in the structure’s shape resulting
as a consequence of uncertainty. When there are many pos-
sible realizations of the feature shape or structure these vari-
ations should be available to the user as alternatives for use
in the decision making process. Contrast this with a syntactic
view of uncertainty visualization. In this case, the visualiza-
tion method portrays uncertainty as fuzzy, noisy, or distorted
regions. While this can alert the user to the presence of uncer-
tainty, these methods do not depict a specific realization of a
structure and possible variations. Our aim is to develop tech-
niques that clearly present structural variations due to uncer-
tainty. Figure 2 illustrates several concrete realizations of the
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anatomically ambiguous boundary between white and gray
matter in the brain. Exploration of these variations is a cen-
tral component of our interactive visualization system.

Fig. 2. Variation in classification of white matter in MRI data.

3.1. Display

The first goal of this research is to develop new methods for
visually communicating uncertainty in visualization applica-
tions. These methods should not only indicate locations of
high uncertainty, but also the semantic meaning of uncer-
tainty; that a range of decisions or class assignments are pos-
sible. Figure 2 illustrates how a visualization of white matter
in a MRI scan can involve many possible realizations. The
method utilizes a probabilistic classification method that pre-
serves uncertainty in the boundary between white matter and
gray matter [3]. While a component of this uncertainty can
be tied to the limits of the acquisition method, i.e. noise and
band-limiting, parts of this boundary are inherently fuzzy. In
reality, the transition from white to gray matter in the cere-
bral cortex is gradual; there is no distinct anatomic boundary
between white and gray matter. Any classification that pro-
duces a distinct boundary in this region of the brain will be
arbitrary. Figure 3 illustrates the difference between a syn-
tactic presentation of uncertain information versus a semantic
presentation. Figure 3A shows the white matter where the
fuzziness of the rendering indicated the degree of uncertainty.
This is a purely syntactic approach, uncertainty is associated
with fuzziness so the rendering maps opacity based on uncer-
tainty, producing the fuzzy appearance. Figure 3B presents
classification uncertainty using a color gradient, which indi-
cates the degree to which the classification would change if
the prior probability of white matter were changed. We can
say that this method has both the properties of a syntactic ap-
proach (color is used to indicate uncertainty) and a semantic
approach (the quantity being color mapped is based on the de-
gree to which there are multiple realizations of the surface).
Figure 3C shows three confidence intervals simultaneously as
red, white, and blue surfaces. This is an example of a purely
semantic approach, showingmultiple realizations of the white
matter class.
Our approach for visualizing classified data advocates de-

coupling the processes of classification (identifying objects in
the data) from the transfer function (specification of color and
opacity). To allow interactive exploration, we defer decision
making (specification of a specific realization of the object)
until a sample is rendered. This requires the fuzzy class prob-
abilities to be included with the data used for rendering. The
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Fig. 3. Visualization of white matter with uncertainty in a
static image. A) a fuzzy rendering (syntactic), B) a color map
based on change in surface position per unit change in risk
(syntactic and semantic), C) confidence intervals as nested
surfaces (semantic). D, E, and F show additional views and
structures for each of the methods.

advantage of using the fuzzy probabilities is that they inter-
polate, unlike discrete class assignments, and allow the op-
tical property assignment, or transfer function design to be
greatly simplified. The difficulty is identifying accurate fuzzy
probabilities, especially when the desired classifier does not
explicitly compute them.

3.2. Capturing Uncertainty

We are currently working with three classification methods
that poses important characteristics related to uncertainty vi-
sualization; those which explicitly compute partial class prob-
abilities, those that do not, and those that can be adapted to
produce them.

• Boundary Model Expectation Maximization This
classifier relies on a model of structure and data acqui-
sition, which allows one to create a feature space from
derivative measures [4, 5]. This feature space is com-
monly used for ad hoc transfer functions in traditional
volume rendering [6]. The feature space, based on data
value and derivatives, can be used with an Expectation
Maximization classifier, which identifies the ideal pa-
rameters for a mathematical model of structure. Such
a classifier computes partial class probabilities, which
can be used for risk analysis and decision making in
the rendering stage of the visualization pipeline.

• Level Set Classification Level sets have been used ex-
tensively for segmentation of image data [7, 8, 9]. This
segmentation algorithm can be thought of as a classifier
that uses spatial position in addition to data as elements
of the feature space. This classifier does not compute
explicit partial class probabilities and will require sen-
sitivity analysis methods to utilize measurement error
and compute class uncertainties.

• Random Walker Classification Like level set meth-
ods, random walker classification/segmentation [10]
uses a PDE to compute the results. Current random
walker classifiers do not explicitly compute partial
class probabilities. However, they can be adapted to
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produce them by modifying the algorithm without re-
sorting to external methods like sensitivity analysis.

3.3. Validation and PhantomModels

Our primary goal in constructing ground truth phantom mod-
els is to have control of the data generation process. Such
control allows us to isolate and analyze sources of uncer-
tainty that are typically outside our control, for instance data
acquisition error and noise. Furthermore, phantom models
and simulated acquisition will allow us to directly compare
the synthetic reality with our uncertainty measurements. Our
approach to phantommodel development is based on the suc-
cessful BrainWeb Phantom project [11]. This synthetic model
allows one to generate simulated MRI scans of a human brain
with a specified resolution, imaging technique (PD, T1, T2),
noise properties, and field inhomogeneities. The genera-
tion of synthetic data relies on an underlying model of the
anatomic structures, which is derived from multiple hand
segmentations. The anatomic structures preserve the natural
fuzzy qualities, such as the boundary between white and gray
matter in the cerebral cortex. The method then simulates the
physical process of data acquisition to generate realistic raw
data. This project has been a valuable resource for many con-
ducting classification and segmentation research on this class
of data. While this class of data is an important application
area for the proposed methods, it only represents a fraction of
the data types that benefit from volume visualization.
Our validation work focuses on the following:

• Identify and classify/segment representative models
from the areas of Non Destructive Testing CT, human
and mammal CT, human PET, human brain FMRI,
and Numerical Weather Simulation. Together, they
represent the majority of data types for which our col-
laborators and users require visualization. We currently
have multiple exemplar sample data sets in each class.

• Develop a reasonable simulation of the image acquisi-
tion process for each of these data classes. We are de-
veloping a single framework for the simulation process
which introduces control of noise, geometric distortion,
and structure variation.

• Develop a system for automated analysis of the pro-
posed classification methods using a wide range of
noise and distortion characteristics. Our aim here is to
validate the proposed classification methods to insure
that uncertainty estimates are always conservative, i.e.
the methods do not underestimate the uncertainty.
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